	<u> </u>					<u> </u>			
04	Condi	ções Espe	cíficas –	Tipo de aço		19/02/2008	Fátima	Fátima	Fátima
03	Forma	de pagam	nento			08/07/05	Edmundo	Edmundo	Edmundo
REV.				M O D I F I C A Ç		DATA	PROJETISTA	DESENHISTA	APROVO
		de In	fra-Es	rasileira strutura	sítio GERAL				
INFR	AERO	Aerop	ortuć	ıria	ÁREA DO SÍTIO GERAL				
ESCAL S/ESC	LA CALA	DATA 07/11/	'01	DESENHISTA	ESTRUTURA METÁLICA				
	r do pro . EDMU	jeto NDO F.	BRITO		TIPO/ESPECIFICAÇÃO DO DOCUMENTO MEMORIAL DE CRITÉRIOS E CONDICIONANTES				
COORI	DENADOF	₹		DF RUBRICA	TIPO DE OBRA		CLASSE DO PF	ROJETO	
SUPERVISOR DO CONTRATO RUBRICA				RUBRICA	SUBISTITUI A		SUBSTITUÍDA	POR	
RUBRICA DO AUTOR REG. DE ARQUIVO				E ARQUIVO	CODIFICAÇÃO GE.07/301.75/00842/04				

ÍNDICE

1. OBJETIVO	3
2. CONDIÇÕES GERAIS	3
3. CONDIÇÕES ESPECÍFICAS	4
4. NORMAS E PRÁTICAS COMPLEMENTARES	10

1. OBJETIVO

Este memorial visa definir os critérios e condicionantes mínimos necessários à elaboração de projetos de estruturas metálicas.

2. CONDIÇÕES GERAIS

Deverão ser obedecidas as seguintes condições gerais:

- 2.1. Conhecer o projeto de arquitetura, assessorando o seu autor com os seguintes objetivos:
 - a) Fornecer os subsídios necessários para que alternativas do partido arquitetônico sejam adequadas e não venham a ser inviabilizadas, quer técnica quer economicamente, por fatores estruturais;
 - b) Fornecer o posicionamento e dimensões das peças estruturais que vierem a servir de condicionante a definição do projeto básico de arquitetura;
 - c) Inteirar-se do projeto como um todo, estendendo a análise aos desenhos e especificações, retirando os subsídios para o cálculo provisório das ações atuantes na edificação. Na etapa de projeto executivo, o Autor do projeto de arquitetura deverá ser alertado de eventuais acabamentos ou arremates incompatíveis com o tipo de estrutura obtido, notadamente no que se refere aos deslocamentos.
- 2.2. Conhecer as características do local da obra no tocante:
 - a) Tipo e custo da mão-de-obra disponível;
 - b) Agressividade do meio ambiente;
 - c) Dimensões do canteiro;
 - d) Topografia;
 - e) Subsolo.
- 2.3. Conhecer todas as instalações a serem implantadas na edificação que sejam condicionantes na escolha e dimensionamento do esquema estrutural a ser proposto.
- 2.4. Solicitar que a arquitetura informe a flexibilidade de utilização desejada no projeto arquitetônico para que eventuais alterações de distribuição interna não venham a ser inviabilizadas por questões estruturais.
- 2.5. Conhecer o prazo fixado para execução da obra.
- 2.6. O Autor do projeto deverá escolher o esquema estrutural que conduza a melhores resultados, tanto do ponto de vista técnico quanto econômico e funcional, adequando-o às condições da obra.
- 2.7. Conhecer as atividades previstas para cada ambiente, o tipo e número de usuários, o *layout* dos equipamentos e demais componentes do recinto, para adotar o tipo de carregamento a ser adequado para área.

- 2.8. As cargas acidentais de saguões, salas de embarque, desembarque, praça de alimentação, lojas comerciais, tecas, lanchonetes, casas de maquinas, cinema, corredores da ponte de embarque e desembarque, cozinhas, depósitos, escadas, terraços e vestíbulos, usadas para o cálculo dos esforços nas estruturas e nas fundações serão as determinadas neste documento na tabela 2 e nas normas pertinentes da ABNT.
- 2.9. A carga permanente é a constituída pelo peso próprio da estrutura e pelo peso de todos elementos construtivos fixos e instalações permanentes.
 - Na falta de determinações experimental, deve ser utilizada a tabela 1 da NBR 6120/1980 para os pesos específicos aparentes dos materiais de construção mas freqüentes.
- 2.10. Adotar os materiais dos elementos estruturais compatíveis com as condições de intemperismo do local ou da região.
- 2.11. O projeto da estrutura deve ser flexível para que se permitam alterações por ocasião de reforma e/ou ampliação.
- 2.12. No cálculo dos esforços das estruturas deverá ser considerada a influência da temperatura conforme estabelece a NBR8800/86(Projeto e Execução de Estruturas de Aço de Edifícios).
- 2.13. Nas especificações de estrutura metálica deverá conter a relação dos documentos (Estudo Preliminar, Memória de Cálculo e Desenhos).
- 2.14. A memória de cálculo deverá conter todas as considerações de carregamento (de combinações dos carregamentos) para obter os esforços máximos e mínimos provenientes de ações acidentais, esquema estrutural com todos os elementos conforme estabelece a Norma e também as entradas e saídas de dados fornecidas pelo software de cálculo utilizado pela Empresa contratada.
- 2.15. Para estimar a quantidade de aço do projeto básico deve-se considerar uma taxa de vinte quilos por metro quadrado de cobertura (20Kg/m²) e para estrutura em alumínio a taxa será de oito quilos por metro quadrado de cobertura (8Kg/m²). Caso o projetista venha usar outra taxa de aço ou de alumínio para estimativa do peso deverá justificar a sua alteração junto à fiscalização do projeto de estrutura.

3. CONDIÇÕES ESPECÍFICAS

Deverão ser observadas as seguintes condições específicas:

3.1. O aço

3.1.1. O tipo aço a ser adotado em projetos deverá ser o A-36 galvanizado resistente a corrosão atmosférica.

3.2. Etapas de Montagem

3.2.1. Prever as diversas etapas de montagem, compatibilizando com as condições locais da obra, sobretudo no que se refere a equipamentos e áreas disponíveis.

3.3. Solicitação de Montagem

3.3.1. Considerando não somente os elementos estruturais isoladamente e os seus dispositivos de ligação, como também a estabilidade do conjunto nessas etapas parciais.

3.4. Inspeção

3.4.1. A estrutura projetada deve oferecer facilidade de inspeção e de manutenção.

3.5. Escolha de Perfis

3.5.1. A escolha de perfis e chapas comercialmente existentes, face à grande flutuação regional de mercado existente no país.

3.6. Contraventamento

- 3.6.1. Contraventar a estrutura no plano da cobertura, com disposição preferencial dos contraventamentos nos vão externos e adequadamente em vão intermediários.
- 3.6.2. Deverá ser previsto diagonais de travamento ou outro sistema comprovado de contraventamento para garantir a estabilidade lateral das treliças e de elementos de elevados índices de esbeltez.
- 3.6.3. Nas estruturas onde a estabilidade lateral é função da rigidez à flexão, o comprimento efetivo de flambagem deverá ser determinado por método racional e nunca menor que o comprimento real da peça.

3.7. Conexões

- 3.7.1. As conexões deverão ser projetadas e pré-dimensionadas de modo a assegurar o comportamento estrutural proposto.
- 3.7.2. O pré-dimensionamento de todas as conexões de forma suficiente para absorver os esforços mínimos previstos nas normas adotadas.
- 3.7.3. Para as conexões parafusadas, respeitar a quantidade mínima de dois parafusos.
- 3.7.4. Nas conexões excêntricas deverão ser evitados os efeitos de excentricidade nas conexões axiais, que deverão, preferencialmente, concorrer para um mesmo centro de gravidade.
 - Em caso de excentricidade, a conexão deverá ser capaz de absorver os acréscimos de tensão provenientes de flexão.
- 3.7.5. Os rebites e parafusos devem ser dispostos de acordo com as especificações adotadas quanto a espaçamentos, máximo e mínimo, de extremidades ou outros conectores.
- 3.7.6. A atuação conjunta entre Solda, Parafusos e Rebite somente será considerada a combinação entre parafusos de alta resistência quando em ligações (friction type), com solda ou com rebites; caso contrário todo esforço deverá ser absorvido pela solda ou pelo rebite.

3.7.7. As Soldas deverão seguir preferencialmente as Normas da AWS ou do SINMETRO, quanto ao cálculo e todas as demais especificações.

3.8. Fadigas

3.8.1. Os elementos ou conexões sujeitos à fadiga serão dimensionados para resistir a um número suficiente de variações de tensão, compatível com a vida útil da estrutura.

3.9. Contraflechas

3.9.1. Deverá ser previsto contraflechas em treliças ou vigas quando necessário, atendendo aos limites indicados nas Normas.

3.10. Juntas de Expansão

3.10.1. Deverão ser tomadas as providências necessárias, para permitir expansão e contração apropriadas às condições de serviço da estrutura.

3.11. Vigas Mistas

- 3.11.1. Todo esforço de cisalhamento será absorvido apenas pela alma da viga e pelos conectores soldados na aba superior da viga.
- 3.11.2. Deverá determinar as propriedades da seção composta com base nas teorias elásticas.

3.12. Vigas

- 3.12.1. As vigas devem ser dimensionadas visando critérios de estabilidade em função das dimensões da viga, disposição dos travamentos e da deformação máxima admissível.
 - Recomenda-se, para uma viga isostática, que a relação entre vão e sua deformação seja no mínimo 300, onde, nessas condições, a deformação será praticamente invisível.
- 3.12.2. Em vigas para usos especiais, essa relação será sensivelmente incrementada, visando critérios de utilização cuja relação mínima será 1.000, como nas vigas de rolamento.

3.13. Trelicas

- 3.13.1. As treliças normalmente compostas de cantoneiras, constituem o tipo mais leve de estrutura, sendo, porém, necessário um travamento lateral adequado para garantir sua estabilidade.
- 3.13.2. No banzo superior, este travamento pode ser constituído pelas terças quando estas estiverem dimensionadas para este acréscimo de carga.
- 3.13.3. As diagonais e montantes geralmente não necessitam de travamento, enquanto o banzo inferior normalmente necessita de um travamento para manter a peça dentro dos limites normativos, procurando evitar efeitos devido à vibração por cargas dinâmicas.

3.14. Terças

- 3.14.1. Para aumentar a estabilidade global da Terça, utilizam-se travamentos constituídos normalmente por barras redondas de aço, fixadas na cumeeira por um elemento rígido.
- 3.14.2. Este travamento, além de aumentar a estabilidade, absorve parte do carregamento devido ao peso próprio da cobertura. Aconselhamos um espaçamento de 2 a 3m entre cada linha desse travamento.

3.15. Colunas

- 3.15.1. As cargas críticas de compressão e de flexão serão determinadas com base nas condições de vinculação da coluna com a estrutura.
- 3.15.2. Nos casos onde a carga de compressão for elevada, deverá ser incluído o acréscimo de tensão proveniente dos efeitos de Segunda ordem.
- 3.15.3. Quando a coluna for composta por dois perfis interligados, essa ligação deverá ser claramente definida para indicar o esquema de funcionamento do conjunto.

3.16. Bases das Colunas

- 3.16.1. Deverá haver uma camada de regularização adequada entre a placa de base e a superfície de apoio, para promover o contato integral entre ambas.
 - A chapa de apoio no concreto deverá ser suficientemente enrijecida para que as tensões resultantes sejam convenientemente distribuídas no concreto.
 - Quando a carga de compressão na coluna for demasiadamente mais significativa que o momento de flexão no engastamento, os chumbadores serão de pequenas dimensões. Nesses casos, eles serão colocados visando a fases desfavoráveis das montagens, com diâmetro preferivelmente não inferior a 22mm.
 - Quando o esforço cortante for muito elevado, provocando tensões de cisalhamento elevadas nos chumbadores, e a parcela de atrito com concreto for pequena, poderão ser soldadas cantoneiras na face inferior da placa para promover uma aderência convenientemente da chapa com o concreto.

3.17. Chumbadores

- 3.17.1. Deverão possuir resistência suficiente para absorver todos os esforços de tração e cisalhamento das bases das colunas, incluindo a tração proveniente de momentos de engastamento.
- 3.17.2. Os chumbadores de expansão deverão ser utilizados apenas em estruturas secundárias e de acordo com as especificações de entidades de confiabilidade comprovada.

3.18. Critérios para calculo dos Esforços Solicitantes

- 3.18.1. Para efeito de cálculo dos esforços solicitantes nas estruturas, a edificação é dividida em três tipos, a saber:
 - a) **Edificação de Pequeno Porte** é aquela cuja área real de construção é menor ou igual a 5.000;
 - b) **Edificação de Médio Porte** é aquela cuja área real de construção está compreendida entre 5.000m² e 20.000m²;
 - c) Edificação de Grande Porte é aquela cuja área real de construção é maior que 20.000m².
- 3.18.2. A Análise Estrutural será feita conforme o tipo da Edificação, adotando-se os seguintes tipos de análise:
 - a) Simplificada: quando a análise da estrutura de um edifício é feita considerado-se todos os seus elementos estruturais isolados (laje/viga/pilar);
 - b) **Intermediária:** quando a análise da estrutura de um edifício é feita considerado-se parte dos seus elementos estruturais isolados (laje/grelha/pórtico plano);
 - c) **Avançada:** quando a análise da estrutura de um edifício é feita considerado-se a <u>interação</u> entre os seus elementos estruturais (analise tridimensional);
 - d) **Escolha do tipo de análise estrutural:** a que se deve ser adotado em cada tipo de edificação, recomenda-se à utilização da tabela abaixo:

TABELA-1

Tipo de Análise					
Ed. Pequeno Porte	Simplificada ou Intermediária				
Ed. Médio Porte	Intermediária				
Ed. Grande Porte	Avançada				

3.19. Cargas de Projeto

3.19.1. As cargas acidentais a serem consideradas para o análise dos esforços na estrutura da Edificação do Aeroporto, são:

TABELA-2

Cargas acidentais	Kg/m²
Sala de embarque e desembarque	300
Conector	300
Ponte de embarque e desembarque	200
Restaurantes, cozinhas, lanchonetes e vestíbulos	300
Lojas comerciais	300
Banheiros	200
Cinemas assento fixo	400
Casa de maquina a ser determinado a cada caso	
Escritórios	200
Lavanderias	400
Terraços	300
Escadas	300
Garagens e estacionamentos ver item2.2.1.6 da NBR 6120/1980	300
Forros	50
Viadutos consultar a norma NBR 7188/1984 ou a mais recente	
Piso de terminal de carga	3500
A carga móvel a ser considerada para o dimensionamento do piso de concreto armado do terminal carga deverá ser consultada qual o tipo de empilhadeira que irá operar no Teca	

3.20. A ação de Vento

3.20.1. É obrigatório a consideração da ação do vento nas estruturas com nós deslocáveis, nas quais a altura seja maior que quatro vezes a largura menor, ou em que, numa dada direção, o número de pilares de uma fila seja inferior a quatro. Nestas condições, a estrutura deve ser projetada considerando-se a ação do vento de acordo com a NBR 6123(Forças devidas ao vento em Edificações).

3.21 Critério de medição do Aço

- Aço será pago da seguinte forma: por quilo de aço efetivamente executado e deve estar incluso fornecimento de materiais, transporte, corte, acabamento, pintura, montagem da estrutura, mão de obra, encargos sociais e BDI.
- A INFRAERO aceita fazer adiantamento de pagamento até e vinte por cento da estrutura contratada depois que a CONTRATADA apresentar a documentação de contratação da Estrutura e também a fiança bancária do valor correspondente a vinte por cento de adiantamento.

4. NORMAS E PRÁTICAS COMPLEMENTARES

Os projetos de estrutura metálica deverão atender as normas e práticas complementares indicadas na "Prática SEAP Geral de Especificação", exceto o que for conflitante com disposições deste documento.

Normas da ABNT

NBR-7188 – Carga Móvel em Ponte Rodoviária e Passarela de Pedestre;

NBR-6120 – Cargas para o cálculo de estruturas de edifícios - Procedimento;

NBR-5984 – Norma Geral de Desenho Técnico;

NBR-6123 – Forças devidas ao vento em Edificações; Disposições da ABNT

NB14 – Projeto e execução de estruturas de aço;

NB17 - Cálculo e execução de estruturas soldadas.